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Human beings are “visionaries”: we rely 
on our vision, almost to the exclusion of our other senses, 
to inform us and guide our interactions with the world. In 
broad strokes, our vision gives us the ability to recognize 
what—objects and people in our environment, things that 
are similar, things that are different—as well as the ability to 
determine where—where things are, where they were, and 
where they will be. 

Computers are not visionaries. Even when configured 
with superb optical “eyes” and abundant “brain” power, most 
computers see poorly, in the sense that, in non-controlled 
environments, their ability to determine what or where is 
limited and inconsistent. A computer would have a very dif-
ficult time identifying everything that would catch a human’s 
eye on a busy street. Furthermore, a computer optimized to 
recognize faces would likely fail miserably if asked to recog-
nize a gun, or steer a car, or perform any visual task other 
than what it was optimized for. 

Yet if current trends in computer technology, algorithm 
development, and data availability continue, computers will 
likely have excellent vision within the next five years. They 
will be able to process a complex visual scene quickly, accu-
rately, and thoroughly, and will match or even outperform 
humans in most vision-specific tasks.

And helping to bring about that “see change” will be, of 
all things, Twitter, the social networking and microblogging 
service giant.

#Hey, look at this

It’s a little odd that humanity’s desire to blog is related 
to the pursuit of computer vision, but the connection exists 
because people often blog about what they see, and the 
computer has to be taught how to see. To recognize a cat, for 
example, the computer must first be given an image of a cat 
and told, “This is a cat.” In fact, the computer needs to have 
seen thousands of cats—in all positions, in different environ-
ments, at various angles, and under arbitrary light condi-
tions such as a visual blog site might provide—so that it can 
recognize a cat regardless of circumstances.  

Humans also have to learn to see, only the process is 
innate and happens largely without supervision. Learning 
begins essentially at birth and continues unabated for several 
years. By the end of its first year, an infant will have observed 
about a petabyte (1015 bytes) worth of data, or enough to fill 
100,000 ten-gigabyte thumb drives. No computer has ever 
come close to being trained on so large a data set. Indeed, 

scientists’ inability to find a sufficiently large training set 
of annotated images has been a major stumbling block to 
realizing a sight-worthy computer. 

That changed on January 24, 2013, the day Twitter 
released Vine, an application that allows users to attach 
and send a short, six-second video tweet to followers. 
Vine has experienced exponential growth since then, 
and the amount of data sent collectively by Vine users 
has already topped 60 terabytes (60 × 1012 bytes). One 
couldn’t ask for a better training set.

“Millions of people are sending six-second videos 
to each other, each annotated with a statement like, 
‘This is my cat playing,’ or ‘NYC’s best taco,’” says Steven 
Brumby of the Los Alamos National Laboratory, the 
lead scientist in an effort to develop a computer’s vision. 
“We can store the videos, then search the collection for 
“cat” and have ready access to hundreds of thousands of 
videos of cats. It’s a remarkable resource.” 

Couple the training set with a supercomputer able 
to execute several trillion operations per second (tera-
flops), and the goal of computer vision comes into view.

“Our focus is to develop the basic mathematics and 
computer science underpinning computer vision,” says 
Brumby. “I anticipate we’ll have visually adept comput-
ers within two years, in part because Google, Amazon, 
Silicon Valley startups, and several big academic groups 
are all working to make computer vision happen. This is 
the holy grail.”

It’s the holy grail because a sighted computer 
would enable a range of vital applications, foremost 
being autonomous robots that can be used for defense, 
manufacturing, resource extraction, emergency disas-
ter response, environmental assessment, etc. If able to 
evaluate its environment faithfully, a seeing computer 
would usher in an era of computer-controlled transpor-
tation—non-stop trucking, coordinated traffic flow, and 
autonomous minivans that pick the kids up from soccer. 
Furthermore, a seeing computer would be an exceptional 
personal assistant, one with full access to the Internet 
and its body of knowledge that could help you keep tabs 
on your loved ones and watch over the sick and elderly.

Computers have such a hard time interpreting a visual field that a 
CAPTCHA (Completely Automated Public Turing test to tell Comput-
ers and Humans Apart) has become a standard online security 
measure. Users are asked to extract information from a simple 
image and thus prove they are human beings. 

#cat
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Unquestionably, a computer looking over your 
shoulder could be a good thing. But there are many 
who fear that a seeing computer will be the starting 
point of a sci-fi nightmare. Consider that the computer 
could use the camera in your smart phone or laptop, 
plus the network of traffic and security cameras that 
monitor essentially every street and alleyway of our 
cities, to identify you and the people around you and 
determine where you are and what you are doing. 
Private companies—for purely commercial reasons—
are already beginning to master the technology for 
identifying and tracking consumers and their interests. 
Apart from raising issues of personal privacy, tracking 
can shift into surveillance, and the computer could be 
used to help achieve and sustain a police state. 

But computers have been used and abused 
almost from the earliest days of computer applications. 
Today’s powerful computers—the “predeprocessors” of 
which helped break Nazi communication codes during 
World War II—already monitor telecommunications 
and email in an effort to hunt down global terrorist 

groups. Despite this level of privacy intrusion, human-
ity has managed to thrive. 

Let there be sight

How is a computer able to see? There is no simple 
answer, as currently the method pursued depends to 
a large extent on the visual task the computer will be 
performing, be it object recognition, event detection, 
video tracking, scene reconstruction, or something 
else. One area Los Alamos is pursuing is object rec-
ognition, basing its algorithms on models of how the 
human brain sees. 

Briefly, object recognition starts by giving the 
computer a digital image that contains, say, a cat, and 
asking it to find all cats. The computer divvies the 
image, or portions of the image, into thousands, if 
not hundreds of thousands of tiny patches, with each 
patch being a tiny image perhaps 8 pixels by 8 pixels in 
size. The computer will try to represent, or duplicate, 
the information content of each patch by searching 
through a collection of patch-sized images that it has 

Computing power is no longer an obstacle in achieving 
computer vision. The graph shows the amount of computing 
power that can be bought for $1000 over time. From about 1950 
on, computing power doubled every two years or so (Moore’s 
law). On the right are brainpower equivalents. When the 
Laboratory’s Roadrunner supercomputer reached a petaflop 
in 2009, it marked the arrival of computing systems large 
enough and fast enough for full-scale, real-time modeling 
of the human visual cortex. But a petaflop machine is 
hardware overkill. Mice have excellent vision using a 
brain that’s 3000 times smaller than a human’s. This 
suggests that a teraflop machine, which should 
be available on the desktop within two 
years, would be more than adequate to 
allow a computer to see.
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“Every object that we wanted the computer to recog-
nize would need a similar portfolio of poses,” says Brendt 
Wohlberg, a scientist working with Brumby. “The dictionary 
becomes extremely large and computationally very expensive 
to manipulate.”

By breaking the image up into features, one can 
represent essentially any image by combinations of simpler 
images, much the way the entire English language can be 
constructed from combinations of just 26 letters.

Processing an image, therefore, entails finding a way to 
represent hundreds of thousands of patches by combinations 
of just a few hundred features. Seeing in real time demands 
that the computer manipulate huge amounts of data—mil-
lions of pixels—very quickly. The processing rate needs to be 
teraflops or better. But the key to seeing lies in the features 
dictionaries, which need to have enough entries to represent 
the content of any patch. It’s vital for the computer to have 
processed countless real-world images so that it can build its 
dictionary. 

stored in memory, and selecting the ones that are a good 
match. The stored images are called features, and the collec-
tion of features is referred to as a dictionary. 

The features at this first level of processing are simple—
a line pitched at a certain angle, a blotch of color, etc. But 
once the computer has done its best to represent each patch 
by combining one or more features, it moves on to the sec-
ond processing level. The small patches are grouped together 
into larger patches that cover a greater fraction of the object. 
These larger patches are then represented by combinations 
of features contained in a second-level dictionary.  These 
features are more indicative of the cat than first-level features 
and might show, for example, the straight lines of its whiskers 
or the color and texture of its fur. After executing several 
similar levels of processing, the patches are large enough to 
include the entire object, and the computer has found a set 
of features that 
accurately repre-
sent the object(s) 
in the input image. 
The set is given 
to a classification 
program, which 
plays a multi-
dimensional game 
of Twenty Ques-
tions before it says, 
“It’s a cat.”

Why use features to represent 
objects, and not simply compare the 
entire image to a reference image, much 
the way a person would identify a thief 
by looking through a “dictionary” of 
mug shots? One reason is that the computer matches images 
by doing a pixel by pixel comparison and calculating a “dis-
tance parameter,” with dissimilar images being farther apart.  

Suppose there are two similar images of today’s featured 
object, the cat, but in one, the cat’s head is upright, while in 
the other, its tilted. A human would instantly recognize that 
its the same cat in both images, but the computer’s pixel by 
pixel comparison would result in a large distance parameter, 
because a portion of the images don’t line up. To obtain a 
closer match, the image dictionary would have to contain 
images of cats with their heads up, with their heads tilted, as 
well as every conceivable variation, so there would always 
have to be a stored image that aligns with the input image. 

Applications of a vision-capable com-
puter include (left) detecting changing 
vegetation in multi-sensor satellite 
imagery and (right) detecting vehicles 
in aerial high-definition video. In each 
pairing, the upper image is the original 
observation, and the lower image is a 
computer-vision reconstruction.
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“Natural images, or portions of a natural image, are generally not that complex,” says Rick Chartrand, who shares lead 
investigator duties with Steven Brumby. “They can almost always be represented by a sparse representation of features, 
assuming one has a sufficient number of features to choose from.” 

Sparse representations, which figure heavily in the computer-vision algorithms being developed at Los Alamos, can be 
understood with a little help from a mixed drink. Consider a local bar, stocked with dozens of liquors, juices, sodas, waters 
and flavorful mixes—the full inventory forming a “liquids dictionary.” Any drink can be made by mixing the elements in 
the dictionary together in various amounts. For example, a gin and tonic is made with 1 part gin, 3 parts tonic water, and 
0 parts of every other liquid in the bar. Each drink is a sparse representation of the liquids dictionary, in that each is made 
by mixing together only a few of the dictionary’s many elements.

Sparse Training 

An N-element 
response vector. 
All L vectors form 
an N × L matrix.

A patch is represented 
as an M-element 

column. All L patches 
form an M × L matrix.

A dictionary containing N features 
forms an M × N matrix.

The image is broken up 
into L patches, each 

with M pixels.* 

Matrix equation for a single patch

The computer recognizes an object by finding a sparse representation of it. The image is broken up into perhaps a 
hundred thousand tiny images called patches. Features are patch-sized color images that the computer can recall from 
a “dictionary” stored in memory. Like mixing a drink, just about any patch can be reproduced by mixing a few features 
together in various amounts. The amounts are encoded in an entity called a response vector. 

 The goal is to find the mix of features that accurately reproduces a patch, which entails finding the optimal reponse 
vector. Each patch or feature is made up of pixels, and by rearranging the pixels, one can represent the patches, the 
features dictionary, and the response vectors as matrices in a matrix equation. The optimal solution to the equation will 
be a set of sparse response vectors, each one a recipe for reproducing a patch as a sparse representation of the features 
dictionary. 

In training a computer to see, a large set of, say, 500 images is processed simultaneously. At 100,000 patches per 
image, all patches form a matrix of 50 million columns, and the computer uses the same features dictionary to find 
the 50-million-column matrix of response vectors. Any of those solutions can be added to the dictionary to improve it. 
The computer can thus bootstrap and optimize both its dictionary and response vectors. The more images a computer 
processes, the better its features dictionaries and the better its sight. 
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* For illustrative purposes, pixels are drawn 
significantly oversized. Pixels typically contain 
far less information than is suggestsed here.
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On the corner of Twitter and Vine 

The six-second Vine videos that can be attached to 
Twitter tweets are a computer-vision resource the likes of 
which the world has never encountered. The phone app is 
easy to use, and people have responded, filming and post-
ing to the world microvideos of their cat at play, the friendly 
waiter at the restaurant, local street performers, or baby’s 
first steps. When terrorist bombs exploded during the 2013 
Boston Marathon, local Vine users posted video of the chaos 
almost instantaneously, while users everywhere took, then 
forwarded, video of television newscasts, spreading word of 
the disaster at an unprecedented pace. Access to the videos 
is free—they are public domain and any Twitter user can 
download them—making what happened in Boston available 
for public scrutiny and analysis. 

When Los Alamos cosmologist and computer sensei 
Mike Warren, who also works with Brumby and Wohlberg, 
heard about the Vine release, he immediately recognized 
the potential to create a unique resource for vision research.  
Utilizing a prototype storage system (initially developed to 
archive astronomy data and the results of supercomputer 
simulations), he wrote software to download and archive the 
videos. The stream of data he started collecting in the early 
spring has since become a deluge. Warren estimates that 
during peak Vine usage this summer he was collecting more 
than a million videos per day.

A quick perusal of the data reveals an unrivaled train-
ing set. For example, searching the tweets for videos anno-
tated with the word “cat” finds more than 250,000 videos, 
most with at least one cat in it. (A similar search finds more 
than 400,000 videos of dogs, apparently the Vine user’s 
BFF). Selecting videos based on their dominant color, like 
green or blue, reveals thousands of short films showing grass 
or sky. Stills from the videos can be used for training, or the 
video themselves can be used to teach the computer to detect 
motion. 

“Watching 24 hours a day, it would take 12 years to view 
the video we have now. That’s an amount of information that 
rivals everything an 18-year-old has ever seen or heard,”  
said Warren.

Where it stands

Life at a national nuclear security laboratory is a 
little different, in that security is a priority and, one way 
or another, affects every process and procedure. The insti-
tutional supercomputers that will be taught to see were 

ill-equipped to receive an ocean of unknown, unverified data 
downloaded from the Web, and system engineers and cyber-
security experts have yet to resolve the myriad of throughput 
and security issues. Only a tiny fraction of Vine data has been 
processed, and a remarkably patient Warren waits for what-
ever changes that need to be made to be made. 

Undeterred, Brumby’s team is continuing to explore 
different algorithms that will process more data faster and 
achieve a higher level of recognition fidelity. They are also 
refining methods that enable a computer to search through 
an enormous data set unsupervised, so that it learns on its 
own which features to extract to best help it identify objects. 

Will a computer ever truly be able to see? If sight is 
simply extracting information from light, then computers are 
already seeing, and Brumby and his team can be viewed as 
high-powered ophthalmologists working to make computers 
see better. But seeing is often tied to awareness, to interpret-
ing the light-based information so as to understand the world 
around us. While cognizant computers are a staple of science 
fiction, they are at present not part of the real world. It’s 
doubtful a computer will ever see things the way we do. But 
whether human-like or not, computers will attain excellent 
vision within our lifetime, and the world around us will be 
forever changed. 

—Jay Schecker

Steven Brumby with a Vine backdrop filtered by the keyword “blue.”


